## 1.12 Unit 1 Test Study Guide

## Geometry

Directions: Using the rule provided, describe the transformation or sequence of transformations that have occurred.

1)  $(x, y) \rightarrow "(y, x + 2)$  2)  $(x, y) \rightarrow "(-y, -x)$  3)  $(x, y) \rightarrow "(-x, 3y)$  4)  $(x, y) \rightarrow "(-y, x)$  2 answers possible: 2 answers possible: QOCCW PReflect over y=x; then up?. Reflect over y=x; then up?. Qoccw Y=-x Streetch by 3; then ref. overy-axis

Directions: Write the rule to represent the transformation.

5) Rotate 180° CW about the origin

(x,y) -> (-x,-y)

7) Translate 4 units left and 8 units up

(X,y) > (x-4, y+8)

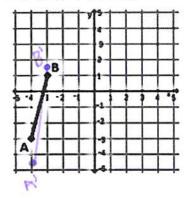
9) Rotate 270° CCW about the origin

(x,y) = (y,-x)

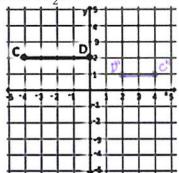
6) Horizontal stretch of 10

(x,x)) > (10x,x)

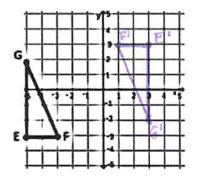
8) Reflect over y = x


 $(x,y) \Rightarrow (y,x)$ 

10) Dilate by a scale factor of  $\frac{1}{3}$ 


(x,y) > ( = x, = y)

Directions: Graph the transformation using the given information.


11)  $(x, y) \rightarrow (x, 1.5y)$ 



12) Dilate by  $\frac{1}{2}$ ; then, reflect over x = 1



13) Rotate 180° CW about (-1, 0)



Directions: Solve each problem.

14) If Z(3, -4), what is Z" after it has been rotate 180° CW and then vertically stretched by 5?

Z" (-3,20)

15) If R'(0, 5), what is R if the following rule was used to produce the image:  $(x, y) \rightarrow (-y, -x)$ ?

R (-5,0)

16) If J(3, 1) is reflected over y = x, dilated by 3 with a center at (1, 2), and then rotated  $90^{\circ}$ CCW, what is J'''?

J'''(-5,1)

Answers may 17) One example: B = (3.4) OReflect over X=-1 2) Translate 3 down B' # (-5. 1) A = (1, 1) C' = (-7, -1) A' = (-3, -2) Directions: Determine how to map the pre-image onto the image. Answers May 18) 19) EX: Dilate by z; then, reflect EX: Reflect over 4=2; then, translate 5 left & 4 down Directions: Determine how to map the pre-image onto itself using the given number of transformations. Answers may vary! 20) 1 transformation EX: Rotate 360° CW Ex: Rotate 90° CW; then, votate 270° CW. Ex: Dilate by ½ with a center at (0,0); then, rotate 180°.

Directions: Describe the sequence of transformations.