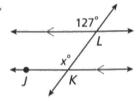
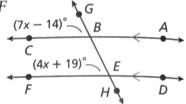
Exercises

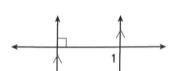


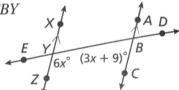
GUIDED PRACTICE

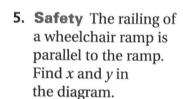

SEE EXAMPLE

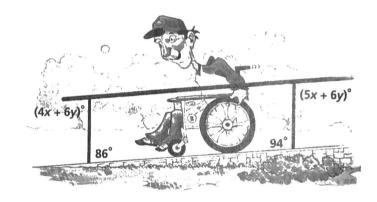
Find each angle measure.

1. m∠*JKL*


2. m∠*BEF*

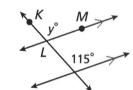

SEE EXAMPLE 2


3. m∠1

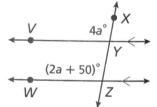


4. m∠CBY

SEE EXAMPLE 3



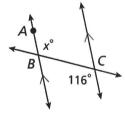
PRACTICE AND PROBLEM SOLVING


Independent Practice

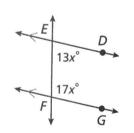
For Exercises	See Example
6-7	1
8-11	2
12	2

Find each angle measure.

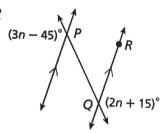
7. m∠*VYX*

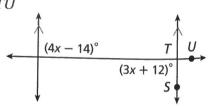


my.hrw.com



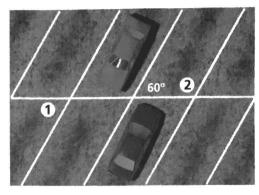
8. m∠ABC


6. m∠*KLM*

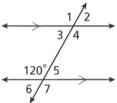

9. m∠EFG

10. m∠*PQR*

11. m∠STU



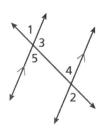
12. Parking In the parking lot shown, the lines that mark the width of each space are parallel.


$$m \angle 1 = (2x - 3y)^{\circ}$$

$$m\angle 2 = (x + 3y)^{\circ}$$

Find x and y.

Find each angle measure. Justify each answer with a postulate or theorem.


Algebra State the theorem or postulate that is related to the measures of the angles in each pair. Then find the angle measures.

20.
$$m \angle 1 = (7x + 15)^{\circ}, m \angle 2 = (10x - 9)^{\circ}$$

21.
$$m \angle 3 = (23x + 11)^{\circ}, m \angle 4 = (14x + 21)^{\circ}$$

22.
$$m \angle 4 = (37x - 15)^{\circ}, m \angle 5 = (44x - 29)^{\circ}$$

23.
$$m \angle 1 = (6x + 24)^{\circ}, m \angle 4 = (17x - 9)^{\circ}$$

Architecture

The Luxor hotel is

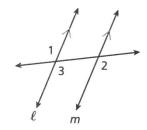
600 feet wide, 600 feet long, and 350 feet high.

The atrium in the hotel

measures 29 million

cubic feet.

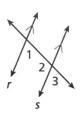
Architecture The Luxor Hotel in Las Vegas, Nevada, is a 30-story pyramid. The hotel uses an elevator called an inclinator to take people up the side of the pyramid. The inclinator travels at a 39° angle. Which theorem or postulate best illustrates the angles formed by the path of the inclinator and each parallel floor? (*Hint:* Draw a picture.)


25. Complete the two-column proof of the Alternate Exterior Angles Theorem.

Given: $\ell \parallel m$

Prove: $\angle 1 \cong \angle 2$

Proof


Proof:	
Statements	Reasons
1. $\ell \parallel m$	1. Given
2. a?	2. Vert. & Thm.
3. ∠3 ≅ ∠2	3. b?
4 6 2	4. d. ?

HOT 26. Write a paragraph proof of the Same-Side Interior Angles Theorem.

Given: $r \parallel s$

Prove: $m\angle 1 + m\angle 2 = 180^{\circ}$

HOT Draw the given situation or tell why it is impossible.

- **27.** Two parallel lines are intersected by a transversal so that the corresponding angles are supplementary.
- **28.** Two parallel lines are intersected by a transversal so that the same-side interior angles are complementary.