Exercises

Hw #1-26

GUIDED PRACTICE

The same

SEE EXAMPLE Find each angle measure.

1. m2JKL

2. mZBEF

SEE EXAMPLE

SEE EXAMPLE

X. Safety The railing of a wheelchair ramp is parallel to the ramp. Find x and y in the diagram.

omit

See

Example

1

2

3

PRACTICE AND PROBLEM SOLVING

Find each angle measure.

6. m∠KLM

7. m/VYX

my.hrw.com

For

Exercises

6-7

8-11

12

8. m∠ABC

9. mZEFG

10. m∠*PQR*

11. mZSTU

Parking In the parking lot shown, the lines that mark the width of each space are parallel.

$$m \angle 1 = (2x - 3y)^{\alpha}$$

$$m \angle 2 = (x + 3y)^{\alpha}$$

Find a and y.

Find each angle measure. Justify each answer with a postulate or theorem.

Algebra State the theorem or postulate that is related to the measures of the angles in each pair. Then find the angle measures.

20. m.
$$1 = (7x + 15)^{\circ}$$
, m. $2 = (10x - 9)^{\circ}$

20.
$$m = 1 = (7x + 15)^{\circ}$$
, $m = 2 = (10x - 9)^{\circ}$
21. $m = 3 = (23x + 11)^{\circ}$, $m = 4 = (14x + 21)^{\circ}$

22.
$$m \cdot 1 = (37x - 15)^{\circ}, m \angle 5 = (44x - 29)^{\circ}.$$

23.
$$m \angle 1 = (6x + 24)^{\circ}, m \angle 4 = (17x - 9)^{\circ}$$

Architecture

The Luxor hotel is

600 feet wide, 600 feet

long, and 350 feet high. The atrium in the hote!

measures 29 million

cubic feet.

6. . Meaning The Luxor Hotel in Las Vegas, Nevada, is a 30-story pyramid. The hotel uses an elevator called an inclinator to take people up the side of the pyramid. The inclinator travels at a 39° angle. Which theorem or postulate best illustrates the angles formed by the path of the inclinator and each parallel floor? (Hint: Draw a picture.) Corresponding L's post.

25. Complete the two-column proof of the Alternate Exterior Angles Theorem.

Given: $\ell \parallel m$

Prove: $\angle 1 \cong \angle 2$

Proof:

Statements	Reasons
1. $\ell \parallel m$	1. Given
2. a. L1 2 L 3	2. Vert. & Thm.
3. ∠3 ≅ ∠2	3. b. corresponding L'S
4. c. <u>224</u> 2	4. d. Trens. Prop of 2.

Write a paragraph proof of the Same-Side Interior Angles Theorem.

Given: $r \parallel s$

Prove: $m\angle 1 + m\angle 2 = 180^{\circ}$

HOT Draw the given situation or tell why it is impossible.

Two parallel lines are intersected by a transversal so that the same-side interior angles are complementary.