2.8 HW #1-8

THINK AND DISCUSS

- 1. Which step in a proof should match the Prove statement?
- 2. Why is it important to include every logical step in a proof?
- 3. List four things you can use to justify a step in a proof.

▶ 4. GET ORGANIZED Copy and complete the graphic organizer. In each box, describe the steps of the proof process.

Exercises

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

- 1. In a two-column proof, you list the ? in the left column and the ? in the right column. (statements or reasons) Statement; reasons
- 2. A ? is a statement you can prove. (postulate or theorem) Theorem

SEE EXAMPLE 1

- 3. Write a justification for each step, given that $m\angle A = 60^{\circ}$ and $m\angle B = 2m\angle A$.
 - 1. $m\angle A = 60^{\circ}$, $m\angle B = 2m\angle A$ Given
 - 2. $m\angle B = 2(60^\circ)$ Substitution prop.
 - 3. m/B = 120° Simplify
 - 4. $m\angle A + m\angle B = 60^{\circ} + 120^{\circ}$ ALL. POE
 - 5. $m\angle A + m\angle B = 180^{\circ}$ Simplify
 - 6. $\angle A$ and $\angle B$ are supplementary. Def. of $\mathsf{Supp.}\ \angle$'s

SEE EXAMPLE 3

4. Fill in the blanks to complete the two-column proof.

Given: $\angle 2 \cong \angle 3$

5. $m\angle 1 + m\angle 3 = 180^{\circ}$

Prove: $\angle 1$ and $\angle 3$ are supplementary.

Proof:

Statements	Reasons
1. ∠2 ≅ ∠3	1. Given
2. m∠2 = m∠3	2. a ?
3. b?	3. Lin. Pair Thm.
4. $m \angle 1 + m \angle 2 = 180^{\circ}$	4. Def. of supp. &

6. Def. of supp. &

5. Use the given plan to write a two-column proof.

Given: X is the midpoint of \overline{AY} , and Y is the midpoint of \overline{XB} . Prove: $\overline{AX} \cong \overline{YB}$

5. c. ? Steps 2, 4

Plan: By the definition of midpoint, $\overline{AX} \cong \overline{XY}$, and $\overline{XY} \cong \overline{YB}$. Use the Transitive Property to conclude that $\overline{AX} \cong \overline{YB}$.

3. AX & YB (Transitive Prop. of &)

b. LI and LZ are Supp.

c. Substitution prop.

d. LI and L3 are SUPP.

2-3 Geometric Proof

See **Exercises** Example 1 6

2

3

7-8 9-10

Online Extra Practice

PRACTICE AND PROBLEM SOLVING

- **6.** Write a justification for each step, given that \overrightarrow{BX} bisects $\angle ABC$ and $m\angle XBC = 45^{\circ}$.
 - 1. \overrightarrow{BX} bisects $\angle ABC$.
 - 2. $\angle ABX \cong \angle XBC$
 - 3. $m \angle ABX = m \angle XBC$
 - 4. $m \angle XBC = 45^{\circ}$
 - 5. $m\angle ABX = 45^{\circ}$
 - 6. $m\angle ABX + m\angle XBC = m\angle ABC$
 - 7. $45^{\circ} + 45^{\circ} = m \angle ABC$
 - 8. $90^{\circ} = m \angle ABC$
 - 9. $\angle ABC$ is a right angle.

- 2) Def. of a bisector.

- Substitution Prop
- 6) L. Addition Post.

Fill in the blanks to complete each two-column proof.

7. Given: ∠1 and ∠2 are supplementary, and ∠3 and ∠4 are supplementary.

∠2 ≅ ∠3

Prove: $\angle 1 \cong \angle 4$

Proof:

(a) MC1+ML22180° ML3 +ML4= 1800

- 6 Substitution Prop
- (C) MCI: MCH
- @ Defof ~ L's.

Statements	Reasons	
 ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary. 	1. Given	
2. a. ?	2. Def. of supp. &	1
3. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$	3. b ?	4
4. ∠2 ≅ ∠3	4. Gíven	
5. m∠2 = m∠3	5. Def. of ≅ ½	1
6. c. <u>?</u>	6. Subtr. Prop. of = Steps 3, 5	
7. ∠1 ≅ ∠4	7. d?	

- **8.** Given: $\angle BAC$ is a right angle. $\angle 2 \cong \angle 3$
 - Prove: ∠1 and ∠3 are complementary.

Proof:

Statements	Reasons	
 ∠BAC is a right angle. m∠BAC = 90° b? 	 Given a? ∠ Add. Post. 	@ Def. of a st. C @ mc1+mc2=mcBAC
4. m∠1 + m∠2 = 90°5. ∠2 ≅ ∠3	4. Subst. <i>Steps 2, 3</i> 5. Given	@ ML2 = ML3
6. c. ? 7. m∠1 + m∠3 = 90° 8. e. ?	6. Def. of ≅ ゑ. 7. d? Steps 4, 6 8. Def. of comp. ゑ.	(d) Substitution Prop. (e) CIFC3 are com?

Use the given plan to write a two-column proof.

9. Given: $\overline{BE} \cong \overline{CE}$, $\overline{DE} \cong \overline{AE}$

Prove: $\overline{AB} \cong \overline{CD}$

Plan: Use the definition of congruent segments to write the given information in terms of lengths. Then use the Segment Addition Postulate to show that AB = CDand thus $\overline{AB} \cong \overline{CD}$.

