TRIANGLE CONGRUENCE: 888 @ 8A8

If all corresponding angles and sides of two triangles are congruent, then the triangles are congruent. However, you can prove triangles are congruent using fewer parts.

SIDE-SIDE-SIDE (SSS)

If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.

If _	AB :	DE	_ (S ide)	
_	BLZ	EF	_ (S ide)	
_	AC >	DF	_ (S ide)	
then, Δ	ABC	= DD	EF 4	222

SAMPLE SSS PROOFS:

1 Given: $\overline{PQ} = \overline{ST}, \overline{QR} = \overline{RT}, R$ is the midpoint of \overline{PS}

Prove: $\Delta PQR \cong \Delta STR$

Statements	Reasons	
1. \overline{PQ} ≅ \overline{ST}	1. Given	
2. $\overline{QR} \cong \overline{RT}$	2. Given	
3. R is the midpoint of \overline{PS}	3. Given	
4. \overline{PR} ≅ \overline{RS}	4. Def. of midpoint	
5. $\triangle PQR \cong \triangle STR$	5 355	

2 Given: $\overline{\mathcal{J}} \cong \overline{MN}$, K is the midpoint of \overline{JN} and \overline{LM}

Prove: $\Delta J K I \cong \Delta N K M$

Statements	Reasons	
1. $\overline{JL} \cong \overline{MN}$	1. Given	
2. K is the midpoint of \overline{JN} and \overline{LM}	2. Given	
3. $\overline{JK} \cong \overline{KN}$	3. Def. of midpoint	
4. $\overline{LK} = \overline{KM}$	4. Def. of midpoint	
5. $\Delta JKL \cong \Delta VKM$	5. 595	

SIDE-ANGLE-SIDE (SAS)

if two sides and the included angle of one triangle is congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

If	AB : DE	_ (S ide)
	LBYLE	_ (Angle)
	BC X EF	(S ide)

then, AABC & DOEF 6 SAS

INCLUDED MEANS THE ANGLE BETWEEN THE SIDES!!

SAMPLE SAS PROOFS:

4 Given: $\overline{JM}\cong \overline{NL}$, $\angle JMN\cong \angle LNM$

Prove: $\Delta JMN \cong \Delta LNM$

Statements	Reasons	
1. $\overline{JM} \cong \overline{NL}$	1. Given	
2. ∠ <i>JMN</i> ≅ ∠ <i>LNM</i>	2. Giller	
3. $\overline{MN} \cong \overline{MN}$	3. Reflexive Property	
4. $\Delta JMN \cong \Delta LNM$	4. SAS	

5 Given: $\overline{AB} \cong \overline{BC}$, \overline{BD} bisects $\angle ABC$

Prove: $\triangle ABD \cong \triangle CBD$

Statements	Reasons	
1. $\overline{AB} \cong \overline{BC}$	1. Giller	
2. \overline{BD} bisects ∠4 BC	2. Given	
3. ∠4 <i>BD</i> ≅ ∠ <i>CBD</i>	3. Def. of biscetor	
4. $\overline{BD} \cong \overline{BD}$	4. Reflexive property	
5. Δ.(1BD) ≅ ΔCBD	5. SAS	

Reasons &ides are Congruent	It's Given © Definition of Midpoint (ବିଜ୍ଞାନ୍ତର ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ
Reasons Angles are Congruent	It's Given © Vertical Angles Alternate Interior Angles Alternate Exterior Angles Corresponding Angles Definition of Angle Bisector Corresponding Angles