TRIANGLE CONGRUENCE: 888 @ 8A8 If all corresponding angles and sides of two triangles are congruent, then the triangles are congruent. However, you can prove triangles are congruent using fewer parts. ### SIDE-SIDE-SIDE (SSS) If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent. | If _ | AB : | DE | _ (S ide) | | |----------------|------|------|-------------------|-----| | _ | BLZ | EF | _ (S ide) | | | _ | AC > | DF | _ (S ide) | | | then, Δ | ABC | = DD | EF 4 | 222 | ### **SAMPLE SSS PROOFS:** **1 Given:** $\overline{PQ} = \overline{ST}, \overline{QR} = \overline{RT}, R$ is the midpoint of \overline{PS} **Prove:** $\Delta PQR \cong \Delta STR$ | Statements | Reasons | | |--|---------------------|--| | 1. \overline{PQ} ≅ \overline{ST} | 1. Given | | | 2. $\overline{QR} \cong \overline{RT}$ | 2. Given | | | 3. R is the midpoint of \overline{PS} | 3. Given | | | 4. \overline{PR} ≅ \overline{RS} | 4. Def. of midpoint | | | 5. $\triangle PQR \cong \triangle STR$ | 5 355 | | **2** Given: $\overline{\mathcal{J}} \cong \overline{MN}$, K is the midpoint of \overline{JN} and \overline{LM} Prove: $\Delta J K I \cong \Delta N K M$ | Statements | Reasons | | |--|---------------------|--| | 1. $\overline{JL} \cong \overline{MN}$ | 1. Given | | | 2. K is the midpoint of \overline{JN} and \overline{LM} | 2. Given | | | 3. $\overline{JK} \cong \overline{KN}$ | 3. Def. of midpoint | | | 4. $\overline{LK} = \overline{KM}$ | 4. Def. of midpoint | | | 5. $\Delta JKL \cong \Delta VKM$ | 5. 595 | | ## SIDE-ANGLE-SIDE (SAS) if two sides and the included angle of one triangle is congruent to two sides and the included angle of another triangle, then the two triangles are congruent. | If | AB : DE | _ (S ide) | |----|---------|-------------------| | | LBYLE | _ (Angle) | | | BC X EF | (S ide) | then, AABC & DOEF 6 SAS ### INCLUDED MEANS THE ANGLE BETWEEN THE SIDES!! #### SAMPLE SAS PROOFS: **4** Given: $\overline{JM}\cong \overline{NL}$, $\angle JMN\cong \angle LNM$ **Prove:** $\Delta JMN \cong \Delta LNM$ | Statements | Reasons | | |---|-----------------------|--| | 1. $\overline{JM} \cong \overline{NL}$ | 1. Given | | | 2. ∠ <i>JMN</i> ≅ ∠ <i>LNM</i> | 2. Giller | | | 3. $\overline{MN} \cong \overline{MN}$ | 3. Reflexive Property | | | 4. $\Delta JMN \cong \Delta LNM$ | 4. SAS | | **5 Given:** $\overline{AB} \cong \overline{BC}$, \overline{BD} bisects $\angle ABC$ **Prove:** $\triangle ABD \cong \triangle CBD$ | Statements | Reasons | | |---|-----------------------|--| | 1. $\overline{AB} \cong \overline{BC}$ | 1. Giller | | | 2. \overline{BD} bisects ∠4 BC | 2. Given | | | 3. ∠4 <i>BD</i> ≅ ∠ <i>CBD</i> | 3. Def. of biscetor | | | 4. $\overline{BD} \cong \overline{BD}$ | 4. Reflexive property | | | 5. Δ.(1BD) ≅ ΔCBD | 5. SAS | | | Reasons &ides
are Congruent | It's Given © Definition of Midpoint (ବିଜ୍ଞାନ୍ତର ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ | |---------------------------------|---| | Reasons Angles
are Congruent | It's Given © Vertical Angles Alternate Interior Angles Alternate Exterior Angles Corresponding Angles Definition of Angle Bisector Corresponding Angles |