heorem 7-4-1 Triangle Proportionality Theorem

THEOREM	HYPOTHESIS	CONCLUSION
If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.	$B = A F$ $\overline{EF} \parallel \overline{BC}$	$\frac{AE}{EB} = \frac{AF}{FC}$

**Think of the
parallel line as a
fraction bar that
helps you set up the
proportions!

CONVERSE

Of a proportionality

Theorem:

If sides are prop.,

then lines are 11.

Corollary 7-4-3 Two-Transversal Proportionality

THEOREM	HYPOTHESIS	CONCLUSION
If three or more parallel lines intersect two transversals, then they divide the transversals proportionally.	$ \begin{array}{c c} A & B \\ \hline C & D \\ \hline E & F \end{array} $	$\frac{AC}{CE} = \frac{BD}{DF}$

Given the figure, find LM and MN to the nearest tenth of an inch.

Theorem 7-4-4 Triangle Angle Bisector Theorem THEOREM An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. ($\triangle \angle$ Bisector Thm.)

Find PS and SR.

$$\frac{x+5}{x-2} \times \frac{40}{32}$$
 $\frac{x+5}{32} \times \frac{40}{32}$
 $\frac{x+5}{40(x-2)} = 32(x+5)$
 $\frac{x+5}{40} \times \frac{40}{40}$
 $\frac{x+5}{40} \times \frac{40}{40}$
 $\frac{x+5}{40} \times \frac{40}{40}$
 $\frac{x+5}{40} \times \frac{40}{40}$
What is SQ?

