ARC & ANGLE MEASURES: Intersecting Chords, Secants, & Tangents

INTERIOR INTERSECTIONS

* Vertex inside

If two secants or chords intersect inside a circle, then the measure of the angle formed is equal to half the sum of the measures of the intercepted arcs.

 $m \angle 1 = \frac{m A0 + m BC}{2}$ $m \angle 2 = \frac{m A3 + m DC}{2}$

1. mZAED

X= 109+45

X = 186 + 112 $X = 149^{\circ}$

2. m\str

3. mZYWX

X=620

4. mLK

$$62 = \frac{X + 74}{2}$$
 $124 = X + 74$

5. mCDE

X= 183°

6. miqT 101 = 95 + X 202 = 95 + X

ON THE CIRCLE INTERSECTIONS * Vertex DN

If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is equal to half the measure of its intercepted arc.

 $m \angle 1 = \frac{1}{2} \left(m \overline{AB} \right)$ $m \angle 2 = \frac{1}{2} \left(m \overline{BCA} \right)$

7. m/DEG 154°

8. m/DBC

9. mXY (29)·2 = 58° 1151. 7.5 Angles Inside, Outside, and On

EXTERIOR INTERSECTIONS

* Vertex OUTSIDE

If secants and/or tangents intersect on the exterior of a circle, then the measure of the angle formed is equal to half the difference of the intercepted arcs.

TWO SECANTS

$$m\angle A = \frac{mCE - mBO}{2}$$

SECANT & TANGENT

$$m\angle A = \frac{mBD - mBC}{2}$$

TWO TANGENTS

$$m \angle A = \frac{m BOC - m BC}{2}$$

10. m _KLM

12. *m*∠*PQR*

$$X = 67 - 19$$

 $X = 24^{\circ}$

$$40 = \frac{X - 75}{2}$$

80 = X-75

$$\frac{(155^{\circ} = \chi)}{16. \text{ m/MK}}$$

15. mQU

$$35 = X - 46$$

 $X = 116^{\circ}$

$$56 = 160 - X$$

