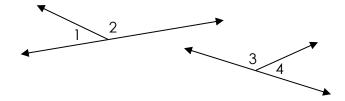

Complete the guided proofs below, using proper notation and properties.

1. Given: DG = 8, GF = 8, $\overline{GF} \cong \overline{EF}$

Prove: $\overline{DG} \cong \overline{EF}$


Statements	Reasons
1.	1. Given
2. DG = GF	2.
3. DG ≅ GF	3.
4. GF ≅ EF	4.
5. DG ≅ EF	5.

2. Given: 41 and 42 are a linear pair.

 $\measuredangle 3$ and $\measuredangle 4$ are a linear pair

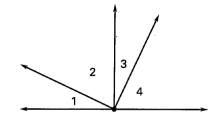
 $\angle 1$ and $\angle 3$ are supplementary angles.

Prove: $\angle 2$ and $\angle 4$ are supplementary

Statements	Reasons
1. ∡1 and ∡2 are a linear pair	1.
2. ∡1 and ∡2 are supplementary angles	2.
3.	3. Definition of Supplementary Angles
4. $\angle 1$ and $\angle 3$ are supplementary angles.	4.
5. $m \angle 1 + m \angle 3 = 180$	5.
6. m∡1+m∡3 = m∡1+m∡2	6.
7.	7. Subtraction Property of Equality
8. ∡3 and ∡4 are a linear pair	8.
9.	9. Definition of a Linear Pair
10. m∠3+m∠4=180	10.
11.	11. Substitution Property of Equality
12.	12.

3. Given: $\overline{FR} \cong \overline{AN}$

Prove: $\overline{FA} \cong \overline{RN}$


•	•	 	
F	R	A	N

Statements	Reasons
1.	1.
2.	2. Definition of \cong segments.
3. RA = RA	3.
4. FR + RA = AN + RA	4.
5. FR + RA = FA	5.
6. AN + RA = RN	6.
7. FA = RN	7.
8.	8.

4. Given: $\angle 1$ and $\angle 2$ are complementary.

$$\cancel{\cancel{4}}1\cong\cancel{\cancel{4}}3$$

Prove: $\angle 3$ and $\angle 4$ are complementary

Statements	Reasons
1.	1. Given
2. $m \angle 1 + m \angle 2 = 90^{\circ}$	2.
3.	3. Given
4.	4. Definition of Congruent Angles
5. <i>m</i> ≼3 + <i>m</i> ≼2 = 90°	5.
6. m≼3+m≼4 = 90°	6.
7.	7.